Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Rep ; 49(7): 6517-6529, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35637315

RESUMEN

BACKGROUND: Neutrophil extracellular traps (NETs) consist of chromatin DNA networks that are studded with cytosolic and granular antimicrobial proteins to trap or kill an infected microorganism. A lipid emulsion, the solvent of pure propofol for intravenous application, is given to clinical patients who require intravenous feeding of fatty acids and fat for energy. Intravenous propofol is widely used to sedate critically ill patients. Both intravenous propofol and its lipid emulsion have immunomodulatory activity. However, the role of lipid emulsion of intravenous propofol on NET induction remains unclear. METHODS: In this study, neutrophils were stimulated with phorbol myristate acetate (PMA) or Escherichia coli (E. coli) in the absence or presence of intravenous propofol (Propofol-Lipuro®), its solvent lipid emulsion (Lipofundin) or pure propofol, and NETs were stained with SYTOX Green for visualization and quantification. Total HOCl was determined by measuring the taurine-chloramine complex, and intracellular HOCl was evaluated with BioTracker™ TP-HOCl 1 dye. RESULTS: PMA-induced NETs were not efficiently inhibited when Propofol-Lipuro® was added after PMA stimulation. Clinically relevant concentrations of Lipofundin exerted a significant reduction in PMA-induced NETs and total reactive oxidative species (ROS), which was comparable to that observed for Propofol-Lipuro®. Lipofundin transiently reduced intracellular HOCl production and the phosphorylation level of extracellular regulated kinase (p-ERK) but did not scavenge HOCl. Moreover, Lipofundin decreased E. coli-induced NETs in a ROS-independent pathway, similar to Propofol-Lipuro®. CONCLUSIONS: All data agree that Lipofundin, the major component of Propofol-Lipuro®, inhibits intracellular HOCl and p-ERK to suppress PMA-induced NET formation but reduces E.coli-induced NETs in a ROS-independent pathway.


Asunto(s)
Escherichia coli , Trampas Extracelulares , Neutrófilos , Fosfolípidos , Propofol , Sorbitol , Acetato de Tetradecanoilforbol , Administración Intravenosa , Combinación de Medicamentos , Emulsiones/administración & dosificación , Escherichia coli/inmunología , Quinasas MAP Reguladas por Señal Extracelular , Trampas Extracelulares/inmunología , Humanos , Ácido Hipocloroso , Neutrófilos/inmunología , Fosfolípidos/farmacología , Propofol/administración & dosificación , Propofol/antagonistas & inhibidores , Propofol/farmacología , Especies Reactivas de Oxígeno/metabolismo , Solventes , Sorbitol/farmacología , Acetato de Tetradecanoilforbol/farmacología
2.
Mol Med Rep ; 25(1)2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34859260

RESUMEN

Among the different types of oral cancer, >90% of cases are oral squamous cell carcinoma (OSCC). 5­fluorouracil (5­FU) is a commonly used treatment for OSCC, but cells typically display resistance to the drug. Propofol, an intravenous anesthetic agent, exhibits certain anticancer effects, including the inhibition of cancer cell proliferation, migration and invasion. Secreted proteins, such as growth factors and cytokines are involved in cancer development and progression, but the effect of propofol on secreted proteins in OSCC is not completely understood. An MTT assay, flow cytometry and western blotting were performed to determine the anticancer effects of propofol. The secretion profile of OSCC was determined using an antibody array, and clinical importance was assessed using the Gene Expression Profiling Interactive Analysis database. The results were verified by performing reverse transcription­quantitative PCR (RT­qPCR) and western blotting. 5­FU­resistant cells were established to determine the role of the gene of interest in drug resistance. The results demonstrated that propofol decreased cell viability and promoted cell apoptosis. The antibody array results showed that propofol attenuated the secretion of multiple growth factors. The bioinformatics results indicated that amphiregulin (AREG) was expressed at significantly higher levels in cancer tissues, which was also related to poor prognosis. The results of RT­qPCR and western blotting revealed that propofol decreased AREG expression. Pretreatment with exogenous recombinant AREG increased EGFR activation and conferred propofol resistance. Moreover, the results indicated that the expression and activation of AREG was also related to 5­FU resistance, but propofol ameliorated 5­FU drug resistance. Therefore, the present study suggested that propofol combination therapy may serve as an effective treatment strategy for OSCC.


Asunto(s)
Anfirregulina/química , Carcinoma de Células Escamosas/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias de la Boca/tratamiento farmacológico , Propofol/farmacología , Anfirregulina/genética , Anfirregulina/metabolismo , Antimetabolitos Antineoplásicos/farmacología , Apoptosis , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Proliferación Celular , Humanos , Hipnóticos y Sedantes/farmacología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...